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Abstract
We present a random matrix theory for systems invariant under the joint action
of parity, P , and time reversal, T , and, more generally, for pseudo-Hermitian
systems. This brings out the appearance of the metric in a systematic way
so that consistency with the postulates of quantum mechanics is maintained.
Here we specialize only to 2 × 2 matrices and we construct a pseudo-unitary
group. With explicit examples, nearest-neighbour level-spacing distributions
for various classes of ensembles are found to exhibit a degree of level repulsion
different from those hitherto known. This work is not only relevant to quantum
chaos, but also to two-dimensional statistical mechanics and consistent non-
local relativistic theories.

PACS numbers: 03.65.Ge, 02.10.Yn, 05.20.Gg, 05.45.Mt

1. Motivation

It has been generally believed that an indefinite metric will make quantum theory inconsistent.
Although it has been discussed in detail that no such inconsistency arises [1], this has not
become a part of conventional quantum mechanics. It has long since been known that certain
divergences in physics can be overcome by the use of an indefinite metric [2]. Due to two
equivalent versions of quantum electrodynamics—namely, the Gupta–Bleuler [3] form, which
involves an indefinite metric, and the Dirac–Schwinger [4] form, which involves a definite
metric along with an instantaneous Coulomb interaction—it is believed that a quantum theory
formulated with an indefinite metric can be reformulated without an indefinite metric. It
seems, thus, that the indefinite metric with local interactions may actually be a way to present
a theory with a definite metric but non-local interactions. A two-level system, represented by
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a 2 × 2 Hamiltonian matrix, has been discussed by Sudarshan [1], which is pseudo-Hermitian
with an indefinite metric. Also, a pseudo-unitary S-matrix was introduced to follow the time-
dependent process. It was suggested that an indefinite metric could be introduced to construct
a truly dynamical theory of quantized fields [5].

At about the same time, Pease developed the concept of K-Hermitian (A# = K−1A†K =
A) and K-unitary (A# = A−1) matrices in the electromagnetic theory of transmission lines,
discussed at length in his book [6].

Later, by introducing a metric, a general criterion for a set of non-Hermitian operators
was established, consistent with the conventional interpretation of quantum mechanics [7]. A
treatment of non-Hermitian operators is very useful, particularly as they may appear rather
simply. For instance, let us consider a Hilbert space endowed with a scalar product between
two vectors. If we perform a similarity transformation on the set of Hermitian operators, we
obtain operators which are non-Hermitian with respect to the scalar product. Of course, this
does not lead to any inconsistency. Sometimes, this can even be put to important use, for
example concerning the boson mapping of fermion systems [8].

Without doubting the beauty of these past works, it is seen that there is no discussion
about possible symmetries, as they are concentrated on questions of metric and locality–non-
locality of interactions. The question is, therefore, when we encounter pseudo-Hermitian
systems or non-Hermitian systems or pseudo-unitary systems, whether there is some new
symmetry that we can define on the space of vectors? With such a symmetry, we could make a
group. In this paper we address these issues. After this discussion, we present random matrix
theory for an ensemble of pseudo-Hermitian matrices. A Gaussian distribution is chosen for
convenience.

Owing to some recent works, the notion of pseudo-Hermiticity has been revived, which
was discussed first by Lee [2]. It has been found that there are certain Hamiltonians describing
quantum systems which possess real eigenvalues even though they are not Hermitian. Many
of these systems are invariant under space–time reflection, i.e. invariant under only a joint
action of parity (P) and time reversal (T ) [9–11]. In this context, the concept of pseudo-
Hermiticity was introduced [12] where it was shown that PT -symmetry is a special case
of pseudo-Hermiticity. pseudo-Hermiticity of an operator or a matrix O is simply defined
through the condition: O† = ηηηOηηη−1 where ηηη is a metric and † represents the usual adjoint or
conjugate-transpose. Remarkably, it was subsequently shown that non-PT invariant systems
that possess real eigenvalues are also pseudo-Hermitian [13]. In the above discussion, there
are physical situations of great interest, including two-dimensional statistical mechanics where
parity and time reversal are broken (preservingPT ) [14–16], quantum chromodynamicswhere
chiral ensembles are used to describe the statistical properties of the lattice Dirac operator
[17], spin–rotation coupling leading to an anomalous g-value for the muon [18] and related
fields.

The problem of two-dimensional statistical mechanics is obviously connected with anyon
physics and hence to the behaviour of an electron in an Aharonov–Bohm medium [19],
i.e. a medium filled with non-quantized magnetic fluxes, reminiscent of the theory of the
fractional quantum Hall effect [20]. It is important to note here that there is also another
motivation which stems from a speculation by Nambu [21] that this might serve as a
model for theoretical ideas such as quark confinement in a medium of monopoles. In this
context, it is known that the spectral fluctuations of an Aharonov–Bohm billiard exhibit an
interpolating behaviour with respect to the strength of the flux line [22]. These billiards
are experimentally realized in terms of quantum dots in the presence of flux lines. It is
of great interest to find an appropriate random matrix description for such PT -invariant
systems.
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2. Quantum mechanics with an indefinite metric

In this section, we present the definitions of pseudo-Hermiticity and pseudo-unitarity. We
illustrate these concepts with the help of examples.

2.1. Summary of salient works

In the past ten years, several non-Hermitian Hamiltonians have been studied, which possess
real eigenvalues under certain conditions. In a detailed computational work, Bessis [23] found
that all the discrete eigenvalues of the potential V (x) = ix3 turn out to be real. Hatano
and Nelson [24] have reported that the Hamiltonians, such as HH−N = (p+ig)2

2m
+ V (x)

with a real random potential, possess real (complex-conjugate pairs) eigenvalues if the
value of an effective parameter is less (more) than a certain critical value. Certain aspects
of non-Hermitian quantum mechanics have been used to discuss the density of states of
disordered systems; see, for instance, [25]. Bender and Boettcher [9] have proposed a very
interesting conjecture that, if a Hamiltonian is invariant under the combined transformation
of P(x → −x) and T , the discrete eigenvalues will be real if the wavefunction changes only
by a phase under PT operation; otherwise the eigenvalues will be complex-conjugate pairs
(an example of spontaneous symmetry breaking). Many analytically and numerically solved
examples have been proposed to support this conjecture. The eigenstates of thePT -symmetric
Hamiltonians were found to be orthogonal in a new way [11] and hence the norm was found
to be indefinite [26]. Remarkably, several non-PT symmetric complex potentials have been
found [27] which have a real discrete spectrum; the complex Morse potential is one such
example.

Pseudo-Hermiticity and several related features such as pseudo-norm, pseudo-
orthogonality, bi-orthogonal basis, etc, have been studied in detail [12]. It has been claimed
that the PT -symmetric potentials are pseudo-Hermitian (H # = ηηηH †ηηη−1 = H) when
ηηη = P . Furthermore, it has been discovered that several non-PT -symmetric potentials
such as the complex Morse potential are pseudo-Hermitian when ηηη is taken to be an
operator e−pθ [13] which effects an imaginary shift in the coordinate epθx e−pθ = x + iθ .
Similarly, several other non-Hermitian Hamiltonians including HH−N (see above), giving
rise to a real discrete spectrum, have been shown to be pseudo-Hermitian under gauge-like
transformation [28]. With the current renewed interest in real eigenvalues of non-Hermitian
Hamiltonians via PT -symmetry settling to the notion of (weak-) pseudo-Hermiticity [29],
the occurrence of complex conjugate pairs of eigenvalues has also been emphasized and
investigated.

2.2. Pseudo-Hermiticity and pseudo-unitarity

Let the metric ηηη be a non-singular matrix, let x and y be two arbitrary vectors and let c be a
constant scalar. Let O be an operator which will facilitate a transformation. Let us further
define ‘hash’ (#) [6] which denotes distortion of the usual Hermitian adjoint operation †. We
demand that

(c)# = c∗ (1)

(x)# = x†ηηη (2)

(Ox)# = x†ηηηO#. (3)
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We now define the (distorted) pseudo-inner product as (x|y). For familiarity, note that

(x|y) = x#y = x†ηηηy = 〈x|ηηηy〉 (4)

Let O transform z to z′. We now insist that (x′|y′), or equivalently, 〈x|ηηηy〉 are left invariant.
Thus,

(x′|y′) = (Ox|Oy) = x†ηηηO#Oy. (5)

Alternatively, we can write

〈x′|ηηηy′〉 = 〈Ox|ηηηOy〉 = x†O†ηηηOy = x†ηηηηηη−1O†ηηηOy. (6)

By comparing equations (5) and (6), we obtain the definition of the ‘hash’ operation as

O# = ηηη−1O†ηηη. (7)

Now the required invariance can be achieved if, in equation (5), we set

O#O = 1 ⇒ O# = O−1. (8)

When ηηη = 1, ‘hash’ goes to ‘dagger’ and equation (4) defines unitarity. Thus, for any other
non-singular ηηη, equations (7) and (8) define pseudo-unitarity.

Let us also check whether O# is ηηη-pseudo-adjoint. We note that

(O#x|y) = x†ηηη(O#)#y = x†ηηηOy = (x|Oy) (9)

and we also note that

(O#)# = (ηηη−1O†ηηη)# = ηηη−1(ηηη−1O†ηηη)†ηηη = ηηη−1ηηη†Oηηη−1†ηηη = O iff ηηη† = ηηη. (10)

Hence, it turns out that O# will be pseudo-adjoint if (O#)# = O and this requires that the metric
should be Hermitian.

We know that any unitary matrix, U, can be written in Cayley’s form, U = eiH′
, where H′

is a Hermitian matrix. Similarly, let O = eiH. For O to be pseudo-unitary, i.e., O# = O−1,
implies that

ηηη−1 e−iH†
ηηη =

∑
j

(−i)jηηη−1(H†)jηηη

j !

=
∑

j

(−i)j (ηηη−1H†ηηη)j

j !
= e−iηηη−1H†ηηη = e−iH, (11)

H should be pseudo-Hermitian, i.e., H# = H.
A given matrix can display pseudo-Hermiticity with respect to several metrics. We have

recently proposed [30] a unique representation of ηηη if the matrix can be diagonalized. Cayley’s
form, as adopted above, for a pseudo-unitary matrix reveals that the eigenvalues of a pseudo-
unitary matrix are either unimodular-like, eiλ with real λ, or, they occur in pairs like eλ1 and
eλ2 such that |λ1λ2| = 1. A non-unitary matrix possessing such an eigenvalue-structure will
be pseudo-unitary.

Also, note that (O1O2)
# = ηηη−1(O1O2)

†ηηη = ηηη−1O2
†ηηηηηη−1O1ηηη = O2

#O1
#. For other

interesting results, see [6].

2.3. Pseudo-unitary group

We now prove that with respect to a fixed metric, ηηη, pseudo-unitary matrices form a group
under matrix multiplication.
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(i) Pseudo-unitary matrices are closed under multiplication. Let O1 and O2 be two arbitrary
pseudo-unitaries. Then,

(O1O2)
# = ηηη−1(O1O2)

†ηηη = ηηη−1O2
†O1

†ηηη

= ηηη−1O2
†ηηηηηη−1O1

†ηηη = O2
#O1

# = O2
−1O1

−1 = (O1O2)
−1. (12)

(ii) If O is pseudo-unitary under ηηη, then O−1 is also pseudo-unitary under the same metric.
To see this,

(O−1)# = ηηη−1(O−1)†ηηη = ηηη−1(O†)−1ηηη

= (ηηη−1O†ηηη)−1 = (O#)−1 = (O−1)−1 = O. (13)

(iii) The identity matrix would act as the unit element of this symmetry transformation group.
(iv) The associativity of the product of pseudo-unitary matrices follows trivially.

This group, introduced in [31], is called PU(N). An explicit construction for PU(2) is
given in that work, along with the generators of the group.

2.4. Pseudo-Hermitian matrices

A general 2 × 2 matrix has four complex entries, and hence eight real parameters. For
having only real eigenvalues, first of all, the diagonal elements should either be real or a
complex-conjugate pair. Furthermore, let us write a general matrix

H =
[

z1 a2 + ib2

a3 + ib3 z2

]
(14)

where z1 and z2 have the restrictions mentioned above. For eigenvalues to be real or a
complex-conjugate pair, there appears a further restriction: b2a3 + b3a2 = 0. This then leads
to four independent parameters for statistical independence among the matrix elements. Thus,
in random matrices considered here, there will only be a maximum of four statistically
independent parameters. Note that a subset of these matrices will be Hermitian where
a2 = a3, b2 = −b3, and where z1, z2 are real.

In the following, we consider three-parameter and four-parameter cases as they give
distinct results for spacing distributions. Certain two-parameter cases will also have spacing
distributions similar to these cases.

A pseudo-Hermitian matrix can be diagonalized by a pseudo-unitary matrix (see equations
(18), (28), (32), (40) and (46)). In the same vein, a pseudo-unitary transformation defines a
class of pseudo-Hermitian matrices (see equation (17)).

3. Pseudo-unitary invariant ensembles

Given a matrix H, the matrix elements will be drawn from a Gaussian distribution [32]

P(H) = N exp

(
− tr(H H†)

2σ 2

)
(15)

where N is the normalization constant. We demand that this matrix is pseudo-Hermitian
with respect to a metric δδδ. The specific distribution is chosen for convenience, as in [33].
Furthermore, there are two possibilities, for the metric may lead to an indefinite norm or a
definite norm. We present each of these cases separately.
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3.1. Random matrices with three independent parameters

As discussed in section 2.4, there are several cases. We now demonstrate that different forms
of matrices along with the nature of the pseudo-norm or the metric lead to different spectral
fluctuations. Since this aspect is novel, it is important to illustrate with disparate cases and
classes.

3.1.1. Cases with an indefinite norm

Example 1. We now consider a Hamiltonian H with a simple matrix representation where
diagonal elements are real and equal and off-diagonal elements are purely imaginary, given
by [31]

H = {Hij } =
[
a −ib
ic a

]
(16)

which can be diagonalized by D, i.e.

H = D

[
E+ 0
0 E−

]
D−1. (17)

The eigenvalues of H are a ± √
bc (bc > 0). H is pseudo-Hermitian with respect to the metric

given by the Pauli matrix, σy .
The corresponding matrix, D,

D = 1√
2

[
1 i/r

ir 1

]
(18)

is pseudo-unitary under the metric

ηηη =
[

0 1
1 0

]
. (19)

The pseudo-norm (see equation (4)), 〈x|ηηηx〉 is 2�(x∗
1x2), with x as a column vector with x1

and x2 as components, and is indefinite.
The eigenvalues are

E± = a ±
[

c

2r
+

br

2

]
(20)

where r = √
c/b (0 � r � ∞).

According to equation (15), the joint probability distribution of a, b, c is

P(a, b, c) = 1

2(πσ 2)
3
2

e− 1
2σ2 [2a2+b2+c2]. (21)

From equations (5) and (20), we have the following relations:

a = E+ + E−
2

b = E+ − E−
2r

c = r(E+ − E−)

2
. (22)

The Jacobian, J , connecting (a, b, c) and (E+, E−, r) is |E+−E−|
2r

. With these, the joint
probability distribution function (j.p.d.f.) of eigenvalues is

P(E+, E−) = |E+ − E−|
2(πσ 2)

3
2

K0

(
(E+ − E−)2

4σ 2

)
e− (E++E−)2

4σ2 . (23)
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Figure 1. The nearest-neighbour level-spacing distribution (25) (full curve) is plotted here for
systems where the matrices have three independent parameters and the pseudo-norm is indefinite.
A comparison is made with the spacing distributions for the orthogonal (small-dashed curve) and
unitary ensembles (medium-dashed curve) which are time-reversal invariant and non-invariant,
respectively. The inset shows that the level repulsion is different from linear or quadratic; it is
S log 1

S
for this case when parity is also broken along with time reversal. In all the figures, we take

σ = 1.

Integrating with respect to E− gives the average density. The shape of the level density
resembles that for Wigner–Dyson ensembles [31]. This is not yet amenable to an analytically
closed form.

The nearest-neighbour level-spacing distribution, P(S), is given in terms of the j.p.d.f.
by [32]

P(S) =
∫ ∞

−∞

∫ ∞

−∞
P(E+, E−)δ(S − |E+ − E−|) dE+ dE−

= S

πσ 2
K0

(
S2

4σ 2

)
. (24)

In terms of the mean-level spacing, D, the normalized spacing distribution assumes the
following form

P(y) = �4
(− 1

4

)
32π3

yK0

(
2�4

(
3
4

)
π2

y2

)
(25)

where y = S/D.
This result is very interesting (figure 1), particularly for its behaviour near zero spacing.

Near y = 0, the probability distribution varies as y log 1
y

. This follows from the asymptotic
properties of the modified Bessel function of the second kind.

Remarkably, for several other examples, the nearest-neighbour level-spacing distribution
turns out to be equation (25). It should be noted that, in the case discussed above, the metric
under which H and D are invariant is different. We present one example where H and D are
invariant under the same metric below.

Example 2. We have now a form with three parameters

H =
[
a + c ib

ib a − c

]
(26)

which is pseudo-Hermitian with respect to ζζζ :

ζζζ =
[

1 0
0 −1

]
(27)
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The eigenvalues are a ± √
c2 − b2.

Note that the diagonalizing matrix, D, is

D = 1√
cos 2θ

[
cos θ i sin θ

−i sin θ cos θ

]
. (28)

As a result, the following relations hold

a = E+ + E−
2

b = E− − E+

2
tan 2θ c = E+ − E−

2
sec 2θ (29)

where θ = − 1
2 sin−1(b/c)

(−π
4 < θ < π

4

)
. The Jacobian is

∣∣−E+−E−
2 sec 2θ

∣∣.
Notice that D is pseudo-unitary. This can be verified by the non-unitarity along with

the nature of the eigenvalues, as stated in section 2.2. Whenever the metric is diagonal with
positive elements, the pseudo-norm is positive definite (see section 3.1.2, for example). In
contrast, any other metric leads to an indefinite pseudo-norm. The spacing distribution turns
out to be that in equation (25). However, as discussed in section 2.4, the condition leading
to real eigenvalues for an arbitrary non-Hermitian matrix separates various possible classes
in terms of the diagonal elements being real or a complex-conjugate pair, and so on. As
mentioned above, the result for the spacing distribution for all these classes turns out to be
equation (25).

3.1.2. A case with a definite norm. Present understanding suggests that the definiteness
or indefiniteness of the metric leads to the unconditional or a conditional existence of real
eigenvalues. We have the following pseudo-Hermitian matrix to illustrate the case with a
definite norm

H = {Hij } =
[

a −iεc
ic/ε b

]
(30)

where a, b, c are real and ε is a fixed parameter. Note that this matrix becomes Hermitian as
ε = 1, thus it is a parametric distortion from Hermiticity.

The eigenvalues of H are

E± = 1
2

[
(a + b) ±

√
(a − b)2 + 4c2

]
. (31)

Due to the fact that the eigenvalues are real unconditionally, we expect the spacing distribution
to be different from equation (25).

H can be diagonalized by D where

D =
[

cos θ iε sin θ

i sin θ/ε cos θ

]
(32)

is pseudo-unitary with respect to the metric

ηηη =
[

1/ε 0
0 ε

]
. (33)

Note that H is pseudo-Hermitian, also with respect to ηηη.
Note that the eigenvalues here are unconditionally real, unlike the examples in

section 3.1.1. The pseudo-norm (defined in equation (4)), 〈x|ηηηx〉, is εx2
1 + x2

2
ε

with x1 and
x2 being the components, and is positive-definite for real ε. Since ηηη is expressible [34] as
OO†, H admits only real eigenvalues, equation (31).

Accordingly, the j.p.d.f. of a, b, c is

P(a, b, c) = N exp[−(a2 + b2 + 2 cosh(2γ )c2)] (34)

where ε = eγ (this choice makes the norm positive-definite) andN is a normalization constant.
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Figure 2. The nearest-neighbour level-spacing distribution (37) is plotted here for systems where
the matrices have three independent parameters and the pseudo-norm is definite. There is a
parameter, γ , which is taken as 0 (small-dashed curve), 1 (medium-dashed curve), and 2 (full
curve) to show different possibilities. γ = 0 corresponds to the GOE result. Also, the Poisson
statistics are plotted (open circles).

We have the following relations

a = 1
2 [(E+ + E−) + (E+ − E−) cos 2θ ]

b = 1
2 [(E+ + E−) − (E+ − E−) cos 2θ ] (35)

c = E+ − E−
2

sin 2θ

with θ = 1
2 tan−1 2c

a−b
(−π/4 < θ < π/4). The Jacobian, J , connecting (a, b, c) and

(E+, E−, θ) is |E+ −E−|. With these, the j.p.d.f. of the eigenvalues is obtained by integrating
P(E+, E−, θ) over θ . We then obtain in terms of S = E+ − E− and t = (E+ + E−)/2:

P(S, t; γ ) ∼ S e− t2

2σ2 − S2 cosh2 γ

4σ2 I0

[
S2

4σ 2
sinh2 γ

]
. (36)

With this, we find the normalized nearest-neighbour level-spacing distribution in terms of
y = S/D

P(y) = 2A
√

1 − tanh4 γ y e−Ay2
I0(Ay2 tanh2 γ ) (37)

where the constant A is given by

A = π

4

1 + tanh2 γ

cosh2 γ
2F

2
1

(
3

4
,

5

4
, 1, tanh4 γ

)
(38)

in terms of a hypergeometric function.
This has the interesting feature of level repulsion as seen in figure 2, and is quite distinctive

due to the fact that the pseudo-norm is definite. The degree of level repulsion is 1 as in the case
of the Gaussian orthogonal ensemble (GOE). However, as a function of γ , it varies as seen
in figure 2. This spacing distribution also appears in another recent work on a non-invariant
Gaussian ensemble of 2 × 2 orthogonal matrices [35].

For γ = 0, the matrix H becomes Hermitian, and the spacing distribution becomes that
for random Hermitian matrices with three parameters, which agrees with the GOE [36].
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The statistics for various real values of γ (= 0, 1, 2) are displayed in figure 2. Thus, this
result gives the spacing distribution as we deviate from Hermiticity (and the GOE as well).

3.2. Random matrices with four independent parameters

In the first of the two cases considered in this section, the diagonal elements are a complex-
conjugate pair whereas, in the other case, they are real. The second case corresponds to a
Hamiltonian matrix introduced by Sudarshan [1].
Case 1. The matrix we consider is

H =
[
a + ib c

d a − ib

]
(39)

where a, b, c and d are real parameters. This matrix is pseudo-Hermitian with respect to ηηη of
equation (19). The eigenvalues E± = a ± √

cd − b2 are real if cd > b2.
The diagonalizing matrix is found to be

D =
[
r eiθ/sin θ −r e−iθ/sin θ

1 1

]
. (40)

D is not pseudo-unitary with respect to ηηη. The eigenvalues of D satisfy the condition,
|λ1λ2| = 1, and we expect it to be pseudo-unitary with respect to some indefinite metric.

According to equation (17), the following relations can be easily verified

a = E+ + E−
2

b = E+ − E−
2

tan θ

(41)
c = r(E+ − E−)

sin 2θ
d = (E+ − E−) tan θ

2r

where r = b
d
, cot θ =

√
cd
b2 − 1. The parameters b, c, d have to be such that cot θ > 0. For

this, b, c, d are required to be of the same sign. Moreover, for the distributions to remain
well-defined, r must be positive. We are thus restricted to having b, c, d being all positive semi-
definite. The algebraic relations among the parameters lead to restrictions in the integration
domains. Thus, θ ∈ (0, π/2), and r ∈ (0,∞). The Jacobian is |−S2 sec2 θ/4r|, where we
denote (E+ + E−)/2 and (E+ − E−) by t and S, respectively.

The j.p.d.f. of the eigenvalues in terms of t and S is given by

P(t, S) ∼ S e− t2

σ2 + S2

4σ2 erfc

(
S√
2σ

)
(42)

where erfc(x) is the complementary error function.
Finally, for this four-parameter matrix, the normalized spacing distribution has a novel

form as a function of the scaled variable, y = S/D as above

P(y) = B2

2(
√

2 − 1)
y e

B2y2

4 erfc

(
By√

2

)
(43)

where

B = 2(
√

2 − log(1 +
√

2))√
2 − 1

. (44)

This shows a linear level repulsion (figure 3) with a large slope, in distinction with the Wigner
surmise for time-reversal invariant ensembles. It has a completely different behaviour in its
details. Along with the results of section 3.1 and the next subsection, equation (43) exemplifies
the richness of the pseudo-Hermitian ensembles.
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Figure 3. The nearest-neighbour level-spacing distribution (43) (full curve) is plotted here for the
systems where the matrices have four independent parameters and the pseudo-norm is indefinite.
A comparison is made with the spacing distributions for the orthogonal (small-dashed curve) and
unitary ensembles (medium-dashed curve) which are time-reversal invariant and non-invariant,
respectively. The inset shows that the level repulsion varies near the origin as αy (with α being the
pre-factor in equation (43)) for this case when parity is also broken along with time reversal.

Case 2. The matrix we consider is

H =
[

a + b d + ic
−d + ic a − b

]
(45)

where a, b, c and d are real parameters. The eigenvalues E± = a ± √
b2 − c2 − d2 are real if

b2 > c2 + d2.
The diagonalizing matrix is found to be

D =
[

i cos θ eiφ sin θ

e−iφ sin θ −i cos θ

]
. (46)

The matrix H is pseudo-Hermitian with respect to ζζζ in equation (27). Also, D is pseudo-
unitary with respect to the same metric, ζζζ .

According to equation (17), the following relations can be easily verified

a = E+ + E−
2

b = (E+ − E−)

2
sec 2θ

(47)
c = − (E+ − E−)

2
tan 2θ cos φ d = (E+ − E−)

2
tan 2θ sin φ

where φ = − tan−1 c
d

, θ = 1
2 sin−1

√
c2+d2

b2

(
0 < θ < π

2 , −π
2 < φ < π

2

)
. The Jacobian is

S2

4 sec 2θ tan 2θ .
The j.p.d.f. of the eigenvalues in terms of t and S is again given by equation (42). The

normalized spacing distribution is also exactly as in equation (43). This exhibits the strong
generality of the result.

For these most general pseudo-Hermitian matrices, the level repulsion is linear near zero
spacing (figures 3 and 4).

4. Summary and concluding remarks

In this paper, quantum mechanics with an indefinite metric is shown to be connected with PT -
symmetry or, more generally, with pseudo-Hermiticity. This leads us to conclude that systems



3360 Z Ahmed and S R Jain

Figure 4. This exhibits the rich structure of the generality (‘universality’) of spectral fluctuations
as a comparison is made among the main results for the spacing distribution. The full and dashed
curves correspond to equations (43) and (25), respectively, showing linear and non-algebraic level
repulsion, respectively.

where P and T are broken find their description in quantum mechanics with an indefinite
metric. The connection of this with physical situations of great importance has already been
discussed in section 1 and in [31].

In a simple manner, the pseudo-unitary group is constructed here. This is in a logical
scheme from a quantum to a random matrix description. Perhaps the most well-studied
characterization is the nearest-neighbour level-spacing distribution, P(S). This gives the
frequency with which a certain spacing between adjacent levels occurs [32]. For the Wigner–
Dyson ensembles, P(S) ∼ Sβ0 e−γS2

where β0 is 1, 2 and 4 for the orthogonal, unitary and
symplectic ensembles. A wide variety of systems display universal properties possessed by
random matrix ensembles, as can be seen in [32, 37, 39]. However, there are systems that
display intermediate statistics [40–42]. These systems range from examples of billiards in
polygonal enclosures, three-dimensional Anderson model at the metal–insulator transition
point, and others. On the other hand, there have long since been important developments
on non-Hermitian ensembles where the eigenvalues are complex [32, 38, 39], and where an
ensemble of unstable states is considered [43]. Clearly, the ensemble developed here does not
fall into any of the known categories and, indeed, displays some novel features as shown here.

It is important to note that the eigenvalues of a pseudo-Hermitian matrix are real only under
certain conditions on the parameters giving the matrix elements. These conditions restrict the
domain of integration over the pseudo-unitary group. This, in turn, leads to restrictions on the
parameters defining the pseudo-unitary transformation (e.g. θ and φ in equation (46)).

The central results are the new spacing distributions given by equations (25) and (43).
For the most general 2 × 2 matrix, there are four independent parameters, and the spacing
distribution is given by equation (43). This is whether or not H and D are respectively pseudo-
Hermitian and pseudo-unitary with respect to the same metric. Similarly, for the general case
with three independent parameters, the spacing distribution is equation (25). As the spacing
becomes small, the degree of level repulsion is known. The asymptotic behaviour near y equal
to zero is as follows:

P(y) → αy as y → 0 (three independent parameters)

P(y) → y log 1
y

as y → 0 (four independent parameters).
(48)

The quantity α is much larger than for the GOE, in addition to differences in details.
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We have also presented a case where, by variation of a parameter, the departure from
Hermiticity occurs and spacing distribution is given by equation (37). For this case, the
behaviour near y = 0 is yf (γ ). The level repulsion remains linear as in the GOE, but f (γ )

gives the slope.
The scenario emerging from this work is the following. When a quantum system violates

time-reversal invariance, it is well known that the degree of level repulsion is two. In addition, if
parity is broken, the degree of level repulsion becomes one, but with an entirely different slope.
This can be a test for classifying systems where parity and time reversal both are preserved or
violated. This scenario is when there are four statistically independent parameters, which is
the most general case. Furthermore, for a special case when there remain three independent
parameters, the level repulsion becomes non-algebraic (S log 1

S
) if the pseudo-norm continues

to be indefinite, and it remains linear if the pseudo-norm becomes definite.
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